Wednesday December 14, 2022
PhysOrg —
The first global analysis of larval orientation studies found that millimeter-size fish babies consistently use external cues to find their way in the open ocean. There are many external cues available to marine fish including the sun, Earth’s magnetic field, and sounds. The new study, led by scientists at the University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science offers important insight into understanding this perilous phase of marine fish.
Understanding the mechanisms that fish larvae use during their pelagic journey is critical for scientists to better predict their dispersal, the connectivity of marine protected areas, and the structure of marine fish populations.
“This study highlights the importance of a deeper understanding of larval orientation mechanisms and suggests the concept of vector-navigation in the early life history of fish,” said the study’s senior author Claire Paris, a professor of ocean sciences at the Rosenstiel School.
Once considered passive drifters relying on ocean currents to get them to their nursery grounds, the Rosenstiel School researchers, together with multiple collaborators, showed that for many species around the world from tropical to temperate regions, fish larvae are able to control their destination and migrate by keeping a bearing.