Loader

Thursday May 9, 2024

Science Daily

Freshwater bacteria with small genomes frequently undergo prolonged periods of adaptive stagnation. Based on genomic analyses of samples from Lake Zurich and other European lakes, researchers at the University of Zurich uncovered specific evolutionary strategies that shape these bacteria’s lifestyles. Understanding the evolutionary dynamics of aquatic microbial communities is key to safeguarding ecosystem services.

Freshwater resources are limited, accounting for only 3.5% of Earth’s water, with just 0.25% accessible on the surface. Nevertheless, freshwater lakes are essential for ecosystem functioning and global carbon cycling due to their high biological productivity and microbial activity. They are critical to human survival, providing drinking water, supporting agriculture, fisheries, and recreation. However, climate change — particularly rising temperatures — threatens these habitats by disrupting microbial communities that are essential for nutrient cycling and water quality maintenance.

“Considering the essential roles bacterial species play in freshwater environments and their vital ecological functions, understanding their adaptive capacity to changing environmental conditions is crucial for ecosystem resilience and sustainable resource management,” says Adrian-Stefan Andrei. He is head of the Microbial Evogenomics Laboratory at the Department of Plant and Microbial Biology of the University of Zurich (UZH). His research team analyzed time-series samples from five European freshwater lakes, collected between 2015 and 2019: Lake Zurich, Lake Thun and Lake Constance in Switzerland, along with the Římov Reservoir and Jiřická Pond in the Czech Republic.

Read more >

Link copied successfully