Loader

Authors

Beulke, A.E., Abadía-Cardoso, A., Pearse, D.E., Goetz, L.C., Thompson, N.F., Anderson, E.C., Garza, J.C.

Publication Date

09 November 2023

Publication Name

Molecular Ecology

Thursday November 16, 2023

Life-history variation is the raw material of adaptation, and understanding its genetic and environmental underpinnings is key to designing effective conservation strategies. We used large-scale genetic pedigree reconstruction of anadromous steelhead trout (Oncorhynchus mykiss) from the Russian River, CA, USA, to elucidate sex-specific patterns of life-history traits and their heritability. SNP data from adults returning from sea over a 14-year period were used to identify 13,474 parent–offspring trios. These pedigrees were used to determine age structure, size distributions and family sizes for these fish, as well as to estimate the heritability of two key life-history traits, spawn date and age at maturity (first reproduction). Spawn date was highly heritable (h2 = 0.73) and had a cross-sex genetic correlation near unity. We provide the first estimate of heritability for age at maturity in ocean-going fish from this species and found it to be highly heritable (h2 from 0.29 to 0.62, depending on sex and method), with a much lower genetic correlation across sexes. We also evaluated genotypes at a migration-associated inversion polymorphism and found sex-specific correlations with age at maturity. The significant heritability of these two key reproductive traits in these imperiled fish, and their patterns of inheritance in the two sexes, is consistent with predictions of both natural and sexually antagonistic selection (sexes experience opposing selection pressures). This emphasizes the importance of anthropogenic factors, including hatchery practices and ecosystem modifications, in shaping the fitness of this species, thus providing important guidance for management and conservation efforts.

Link copied successfully